Finally found some hard info conceded by its own manufacturer that answers some of the questions:
*
Generators
Propulsion Motors
Displays & Controls
Power Distribution
Performance
Fuel Efficiency
<table style="border-collapse:collapse;" border="0" cellpadding="0" width="750"><tbody><tr><td align="center" bgcolor="#000000" width="125">
Fuel Efficiency</td><td bgcolor="#000000" width="28">*</td><td bgcolor="#000000" width="296">*
</td><td bgcolor="#000000" width="178">
Diesel-Electric
Marine Propulsion
Systems and Accessories</td><td align="center" bgcolor="#ffffff" width="133">
</td></tr><tr><td rowspan="3" bgcolor="#000000" width="125">
</td><td colspan="4">*</td></tr><tr><td colspan="4">OSSA POWERLITE<sup>®</sup>
Diesel-Electric Marine Propulsion Systems and Accessories
</td></tr><tr><td colspan="4">*
</td></tr><tr><td bgcolor="#000000" valign="top" width="125">Home
Overview
Products
FAQ
Installations
Tech Library
Contact
</td><td rowspan="3" valign="top" width="15">
*
</td><td colspan="3" rowspan="3" valign="top">How diesel-electric propulsion saves fuel
Download a PDF version of this file.
For most boaters, improved fuel efficiency ranks pretty high on the list when they consider the advantages of diesel-electric propulsion. While its clear that the technology can improve fuel efficiency (this is, after all, one of the main drivers pushing commercial vessels to diesel-electric), few people in the pleasure boat industry understand how it does so. Is it like a hybrid-electric car? Is "electric" horsepower somehow different from diesel horsepower?
It would seem that, if anything, adding a generator and motor between the propeller and engine (no matter how efficient they are) would simply be introducing additional losses which would not otherwise be there. How can adding more power conversions and the losses associated with it improve fuel efficiency? As you will see in the exploration that follows, what diesel-electric propulsion technology does is to create the potential for fuel saving. It does not, in and of itself, automatically provide it. Understanding the technical issues that effect fuel economy is important for the potential buyer since not all diesel-electric systems take advantage of this potential.
To get started it should be acknowledged that placing a motor and generator between the propeller and diesel engine does indeed introduce new losses into the drive train. These losses can range from relatively minor to very significant and are directly proportionate to the efficiency of the motor, motor controller and generator. Different motor technologies and construction methods result in products of widely varying performance. Using a greater number of thin laminations will result in a more efficient, though more expensive, motor or generator than if they are built using fewer and thicker laminations. Similarly, saving energy in the controller means spending more on the electronic chips that control the flow of power.
Its not only a matter of spending money, but also one of developing and applying the most appropriate technologies. Some motor designs are quite efficient at one speed/load condition but drop off quickly as soon as the speed or load changes. Others have a much flatter efficiency curve. The collective impact of these differences can be huge with real operational efficiencies varying from better than 98% to as low as 72% for motors and typically between 97% and 84% for generators. This means that for every 100 HP out of the engine you could obtain as much as 95 hp at the propeller shaft or as little as 61 HP.* At the high end this compares favorably with the 3% to 5% loss typical of a mechanical transmission (although not all electric motors can be directly connected to the propeller shaft).Considering these electrical losses, is it really possible to improve energy efficiency? The answer is clearly yes, so long as the basic efficiency of your motor, generator and controller is high. What you are relying on is that you can improve the efficiency of other parts of the system by more than the new losses you have introduced. Fortunately, if the electrical system losses are relatively low, this isnt too hard to do. It turns out that there are many limitations inherent in conventional direct diesel drive that waste fuel. By making more efficient use of the engine and propeller it is possible to more than offset the electrical conversion losses.
The foundation for this saving comes from the fact that, in a well-designed diesel-electric drive system, the power required by the propeller is "decoupled" from the diesel engine speed.* In other words, in a diesel-electric system, the engine/generator could theoretically be running at full speed (100% output) while the propeller is only tuning at 50% of peak speed so long as the motor is sized to handle the power. Similarly, if the propeller were lightly loaded, the engine/generator might only need to turn at low speed to provide enough energy to drive the propeller at full speed. This means that diesel-electric systems can be much better at "self-optimizing" to accommodate varying loads than are conventional systems. At sea, load conditions change by the trip (number of passengers), by the hour (wind and tide) and by the minute (going up a wave or surfing down it). These variations provide a significant opportunity for fuel savings.
To better understand how this works lets first take a look at the fuel efficiency of a typical diesel marine engine.
The chart on the right shows the peak power output of the engine at various speeds (top line), the peak power output minus the transmission loss (dotted line) and the amount of power that the propeller is capable of harnessing from the engine (bottom line).
The chart on the left shows the amount of fuel consumed by the engine at various speeds. What is not immediately apparent is that this reflects the fuel consumption it takes to produce the power shown in the propeller curve, not the peak power output of the engine. At maximum rpm (point "A") it doesnt matter as both are the same. For general motoring, most boaters would back the throttle down to about 2,800 rpms (point "B"). At this rpm the engine is producing 68hp but only 35hp are being used so point "B" on the fuel curve is for the 35hp not 68hp.
Referring to the left chart, at point "A" the engine is consuming 17 liters of fuel per hour. In terms of fuel efficiency, this translates to 0.25 liters of fuel for every hp produced. When the throttle is backed off to point "B" the propeller is no longer placing a full load on the engine and fuel consumption is 8 liter per hour, or 0.22 liters per hp. If we were to continue to throttle back to 2,000 rpms, the engine would be producing more than three times the power required by the propeller and the fuel efficiency drops to .33 liters per HP.Clearly, in terms of fuel efficiency, point "B" is the "sweet spot".- but why? Is it because the engine speed is lower and the fact that the engine is no longer 100% loaded? If this was the case you would see further improvement as you backed down to 2,000 rpms which you do not. This leaves open the question of what other load/speed combinations would improve efficiency. For a conventional direct diesel drive the question is irrelevant since the engine speed/power and the propeller speed/load are directly linked. They are what they are and the only way to change it would be to incorporate a variable-pitch propeller.
To investigate this further, lets look at the chart produced by a different, but equally well-know engine manufacturer for an engine of similar size.This chart also compares the total engine power produced ("M") with the load which can be transmitted by a matched propeller ("P"). In addition, it shows the amount of power which can be produced at various engine speeds for a given fuel consumption rate (dotted lines). A quick glance quickly shows that the issue of fuel efficiency is much more complex than the prior charts would indicate. For example, look at point #1 and #2. Both show the engine with 17kw of load. At point #1 the load is applied at an engine speed of 1,000 rpm. At this speed the engine is only producing 20kw so it is almost fully loaded. At point #2, the speed of the engine is 2,800 rpm and only about 1/3rd loaded. At point #1 the engine is consumes 4 liter/hr to handle the 17kw load (.18 liters per hp). However, at point #2 it requires 6 liter/hr for the same load - 50% more than is required at the lower speed.Now, lets follow this through and apply it to a traditionally outfitted, direct-diesel boat returning home in a following sea. Well assume that the throttle is set for a quick return back to port and holds the engine at a constant high speed 2,600 rpm. As each wave passes under the stern of the boat, the load on the propeller is significantly and temporarily reduced (to 17kW for the sake of this example). During this time the fuel consumption of the engine is 6 liters/hr (point #2 on our chart). After the wave passes, the load increases and fuel consumption increases to 13.5 liters/hr. If we assume that the engine is fully loaded 50% of the time and lightly loaded 50% of the time then the average fuel economy on this return trip is 9.75 liters/hr.If the boat had a well designed diesel-electric propulsion system, the diesel engine speed would be "decoupled" from the speed of the propeller. As the boat surfs down the wave and the load is removed from the propeller, the engine (generator) would respond by slowing down. At this slower speed the engine is operating more efficiently with a fuel consumption of only 4 liter/hr (point #1 on the chart). After the wave passes and the propeller is again fully loaded, the engine (generator) speeds up and the fuel consumption returns to 13.5 liters/hr. With our diesel-electric system the average fuel economy on the return trip is 8.75 liter/hr a savings of 10%.This example illustrates one way in which diesel-electric propulsion can save fuel - by automatically adapting to the constantly chart load conditions characteristic of every sea voyage. However, not all diesel-electric drive systems take advantage of this opportunity. At least one manufacturer claims that their system "improves fuel efficiency by running the generator at a constant speed". To support this claim they point out that the engines in hybrid-electric automobiles do not vary their speed. What they may not realize is that, in a hybrid-electric automobile, the engine runs only when if and when it will be properly loaded either by powering the car directly and/or by charging the battery pack. This is not the case in a marine application. Hybrid-electric systems make sense in automobiles where the huge energy fluctuations of accelerating and braking justify the "buffer" of a battery pack. In marine applications, the power fluctuations are present but not as dramatic and they happen on a different time scale. At sea, diesel-electric systems which incorporate generators capable of varying their speed to match the load provide the best fuel efficiency.</td></tr></tbody></table>